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1 Introduction

Research on sparse matrix techniques has become increasingly complex, and this trend is

likely to accentuate if only because of the growing need to design efficient sparse matrix

algorithms for modern supercomputers. While there are a number of packages and 'user

friendly' tools, for performing computations with small dense matrices there is a lack

of any similar tool or in fact of any common tools for working with sparse matrices.

Yet a collection of a few basic programs to perform some elementary and common tasks

may be very useful in reducing the typical time to implement and test sparse matrix

algorithms. That a common set of routines shared among researchers does not exist yet

for sparse matrix computation is rather surprising. Consider the contrasting situation

in dense matrix computations. The Linpack and Eispack packages developed in the

70's have been of tremendous help in various areas of scientific computing. One could

speculate that the widespread availability of these packages must have saved millions

of hours of coding effort world-wide. In contrast, it is very common that researchers in

sparse matrix computation code their own subroutine for such things as converting the

storage mode of a matrix or for reordering a matrix according to a certain permutation.

One of the reasons for this situation might be the absence of any standard for sparse

matrix computations. For instance, the number of different data structures used to store

sparse matrices in various applications is staggering. For the same basic data structure

there often exist a large number of variations in use. As sparse matrix computation

technology is maturing there is a desperate need for some standard for the basic storage

schemes and possibly, although this is more controversial, for the basic linear algebra

operations.

An important example where a package such as SPARSKIT can be helpful is for

exchanging matrices for research or other purposes. In this situation, one must often

translate the matrix from some initial data structure in which it is generated, into a

different desired data structure. One way around this difficulty is to restrict the number

of schemes that can be used and set some standards. However, this is not enough

because often the data structures are chosen for their efficiency and convenience, and it

is not reasonable to ask practitioners to abandon their favorite storage schemes. What

is needed is a large set of programs to translate one data structure into another. In the

same vein, subroutines that generate test matrices would be extremely valuable since

they would allow users to have access to a large number of matrices without the burden

of actually passing large sets of data.

A useful collection of sparse matrices known as the Harwell/Boeing collection, which

is publically available [4], has been widely used in recent years for testing and comparison

purposes. Because of the importance of this collection many of the tools in SPARSKIT

can be considered as companion tools to it. For example, SPARSKIT supplies simple

routines to create a Harwell/Boeing (H/B) file from a matrix in any format, tools for

creating pic files in order to plot a H/B matrix, a few routines that will deliver statistics

for any H/B matrix, etc.. However, SPARSKIT is not limited to being a set of tools

to work with H/B matrices. Since one of our main motivations is research on iterative
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methods, we provide numerous tools that may help researchers in this specific area.

SPARSKIT will hopefully be an evolving package that will benefit from contributions

from other researchers. This report is a succinct description of the package in its version

one release.

2 Data structures for sparse matrices and the con-

version routines

One of the dimculties in sparse matrix computations is the variety of types of matrices

that are encountered in practical applications. The purpose of each of these schemes is

to gain efficiency both in terms of memory utilization and arithmetic operations. As a

result many different ways of storing sparse matrices have been devised to take advantage

of the structure of the matrices or the specificity of the problem from which they arise.

For example if it is known that a matrix consists of a few diagonals one may simply

store these diagonals as vectors and the offsets of each diagonal with respect to the main

diagonal. If the matrix is not regularly structured, then one of the most common storage

schemes in use today is what we refer to in SARSKIT as the Compressed Sparse Row

(CSR) scheme. In this scheme all the nonzero entries are stored one row after the other

in a one-dimensional real array A together with an array JA containing their column

indices and a pointer array which contains the addresses in A and JA of the beginning of

each row. A]so of importance because of its simplicity is the coordinate storage scheme

in which the nonzero entries of A are stored in any order together with their row and

column indices. Many of the other existing schemes are specialized to some extent. The

reader is referred to the book by Duff et al. [3] for more details.

2.1 Storage Formats

Currently, the conversion routines of SPARSKIT can handle twelve different storage

formats. These include some of the most commonly used schemes but they are by no

means exhaustive. We found it particularly useful to have all these storage modes when

trying to extract a matrix from someone else's application code in order, for example,

to analyze it with the tools described in the next sections or, more commonly, to try a

given solution method which requires a different data structure than the one originally

used in the application. Often the matrix is stored in one of these modes or a variant

that is very close to it. We hope to add many more conversion routines as SPARSKIT

evolves.

In this section we describe in detail the storage schemes that are handled in the

FORMATS module. For convenience we have decided to label by a three character name

each format used. We start by listing the formats and then describe them in detail in

separate subsections (except for the dense format which needs no detailed description).

DNS Dense format
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BND Linpack Banded format

CSR Compressed Sparse Row format

CSC Compressed Sparse Column format

CO0 Coordinate format

ELL Ellpack-Itpack generalized diagonal format

DIA Diagonal format

BaR Block Sparse Row format

MSR Modified Compressed Sparse Row format

SSK Symmetric Skyline format

NSK Nonsymmetric Skyline format

JAD The Jagged Diagonal scheme

In the following sections we denote by A the matrix under consideration and by N

its row dimension and NNZ the number of its nonzero elements.

2.1.1 The Compressed Sparse Row and related formats (CSR, CSC and

MSR)

The Compressed Sparse Row format is the basic format used in SPARSKIT. The data

structure for Compressed Sparse Row consists of three arrays.

• A real array A containing the real values alj stored row by row, from row 1 to N.

The length of A is NNZ.

• An integer array JA containing the column indices of the elements alj as stored

in the array A. The length of JA is NNZ.

• An integer array IA containing the pointers to the beginning of each row in the

arrays A and JA. Thus the content of IA(i) is the position in arrays A and JA

where the i-th row starts. The length of IA is N -k 1 with IA(N q- 1) containing

the number IA(1) q- NNZ, i.e., the address in A and JA of the beginning of a

fictitious row N + 1.

The Compressed Sparse Column format is identical with the Compressed Sparse Row

format except that the columns of A are stored instead of the rows. In other words the

Compressed Sparse Column format is simply the Compressed Sparse Row format for the

matrix A r.



SPARSKIT 5

The Modified Sparse Row (MSR) format is a rather common variation of the Com-

pressed Sparse Row format which consists of keeping the main diagonal of A separately.

The corresponding data structure consists of a real array A and an integer array JA.

The first N positions in A contain the diagonal elements of the matrix, in order. The

position N + 1 of the array A is not used. Starting from position N + 2, the nonzero

elements of A, excluding its diagonal elements, are stored row-wise. Corresponding to

each element A(k) the integer JA(k) is the column index of the element A(k) in the

matrix A. The N + 1 first positions of JA contain the pointer to the beginning of each

row in A and JA. The advantage of this storage mode is that many matrices have a

full main diagonal, i.e., a_i _ O,i = 1,... ,N, and this diagonal is best represented by

an array of length N. This storage mode is particularly useful for triangular matrices

with non-unit diagonals. Often the diagonal is then stored in inverted form (i.e. 1/aii

is stored in place of ali) because triangular systems are often solved repeatedly with the

same matrix many times, as is the case for example in preconditioned Conjugate Gra-

dient methods. The column oriented analogue of the MSR format, called MSC format,

is also used in some of the other modules, but no transformation to/from it to the CSC

format is necessary: for example to pass from CSC to MSC one can use the routine to

pass from the CSR to the MSR formats, since the data structures are identical. The

above three storage modes are used in many well-known packages.

2.1.2 The banded Linpack format (BND)

Banded matrices represent the simplest form of sparse matrices and they often convey

the easiest way of exploiting sparsity. There are many ways of storing a banded matrix.

The one we adopted here follows the data structure used in the Linpack banded solution

routines. The motivation here is that one can often make use of this well-known package

if the matrices are banded. For fairly small matrices (say, N < 2000 on supercomputers,

N < 200 on fast workstations, and with a bandwidth of O(N½)), this may represent

a viable and simple way of solving linear systems. One must first transform the initial

data structure into the banded linpack format and then call the appropriate band solver.

For large problems it is clear that a better alternative would be to use a sparse solver

such as MA28, which requires the input matrix to be in the coordinate format.

In the BND format the nonzero elements of A are stored in a rectangular array ABD

with the nonzero elements of the j-th column being stored in the j - th column of

ABD. We also need to know the number ML of diagonals below the main diagonals

and the number MU of diagonals above the main diagonals. Thus the bandwidth of A

is ML + MU + 1 which is the minimum number of rows required in the array ABD.

An additional integer parameter is needed to indicate which row of ABD contains the

lowest diagonal.

2.1.3 The coordinate format (COO)

The coordinate format is certainly the simplest storage scheme for sparse matrices. It

consists of three arrays: a real array of size NNZ containing the real values of nonzero
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elements of A in any order, an integer array containing their row indices and a second

integer array containing their column indices. Note that this scheme is as general as the

CSR format, but from the point of view of memory requirement it is not as efficient.

On the other hand it is attractive because of its simplicity and the fact that it is very

commonly used. Incidentally, we should mention a variation to this mode which is

perhaps the most economical in terms of memory usage. The modified version requires

only a real array A containing the real values a_j along with only one integer array that

contains the integer values (i- 1)N +j for each corresponding nonzero element alj. It is

clear that this is an unambiguous representation of all the nonzero elements of A. There

are two drawbacks to this scheme. First, it requires some integer arithmetic to extract

the column and row indices of each element when they are needed. Second, for large

matrices it may lead to integer overflow because of the need to deal with integers which

may be very large (of the order of N2). Because of these two drawbacks this scheme has

seldom been used in practice.

2.1.4 The diagonal format (DIA)

The matrices that arise in many applications often consist of a few diagonals. This

structure has probably been the first one to be exploited for the purpose of improving

performance of matrix by vector products on supercomputers, see references in [8]. To

store these matrices we may store the diagonals in a rectangular array DIAG(1 : N, 1 :

NDIAG) where NDIAG is the number of diagonals. We also need to know the offsets

of each of the diagonals with respect to the main diagonal. These will be stored in an

array IOFF(1 : NDIAG). Thus, in position (i,/_) of the array DIAG is located the

element ai,_+_oyy(k) of the original matrix. The order in which the diagonals are stored in

the columns of DIAG is unimportant. Note also that all the diagonals except the main

diagonal have fewer than N elements, so there are positions in DIAG that will not be

used.

In many applications there is a small number of non-empty diagonals and this scheme

is enough. In general however, it may be desirable to complement this data structure,

e.g., by a compressed sparse row format. A general matrix is therefore represented as

the sum of a diagonal-structured matrix and a general sparse matrix. The conversion

routine CSRDIA which converts from the compressed sparse row format to the diagonal

format has an option to this effect. If the user wants to convert a general sparse matrix

to one with, say, 5 diagonals, and if the input matrix has more than 5 diagonals, the rest

of the matrix (after extraction of the 5 desired diagonals) will be put, if desired, into a

matrix in the CSR format. In addition, the code may also compute the most important

5 diagonals if wanted, or it can get those indicated by the user through the array IOFF.

2.1.5 The Ellpack-Itpack format (ELL)

The Ellpack-Itpack format [6, 9, 5] is a generalization of the diagonal storage scheme

which is intended for general sparse matrices with a limited maximum number of nonze-

ros per row. Two rectangular arrays of the same size are required, one real and one
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integer. The first, COEF, is similar to DIAG and contains the nonzero elements of

A. Assuming that there are at most NDIAG nonzero elements in each row of A,

we can store the nonzero elements of each row of the matrix in a row of the array

COEF(1 : N, 1 : NDIAG) completing the row by zeros if necessary. Together with

COEF we need to store an integer array JCOEF(1 : N, 1 : NDIAG) which contains

the column positions of each entry in COEF.

2.1.6 The Block Sparse Row format (BSR)

Block matrices are common in all areas of scientific computing. The best way to describe

a block matrix is by saying that it is a sparse matrix whose nonzero entries are square

dense blocks. Block matrices arise from the discretization of partial differential equations

when there are several degrees of freedom per grid point. There are restrictions to this
scheme. Each of the blocks is treated as a dense block. If there are zero elements within

each block they must be treated as nonzero elements with the value zero.

There are several variations to the method used for storing sparse matrices with

block structure. The one considered here, the Block Sparse Row format, is a simple

generalization of the Compressed Sparse Row format.

We denote here by NBLK the dimension of each block, by NNZR the number of

nonzero blocks in A (i.e., NNZR - NNZ/(NBLK')) and by NR the block dimension

of A, (i.e., NR = N/NBLK), the letter R standing for 'reduced'. Like the Compressed

Sparse Row format we need three arrays. A rectangular real array A(1 : NNZR, 1 :

NBLK, 1 : NBLK) contains the nonzero blocks listed (block)-row-wise. Associated

with this real array is an integer array JA(1 : NNZR) which holds the actual column

positions in the original matrix of the (1,1) dements of the nonzero blocks. Finally, the

pointer array IA(1 : NR + 1) points to the beginning of each block row in A and JA.

The savings in memory and in the use of indirect addressing with this scheme over

Compressed Sparse Row can be substantial for large values of NBLK.

2.1.7 The Symmetric Skyline format (SSK)

A Skyline matrix is often referred to as a variable band matrix or a profile matrix [3].

The main attraction of skyline matrices is that when pivoting is not necessary then the

skyline structure of the matrix is preserved during Ganssian elimination. If the matrix

is symmetric we need only to store its lower triangular part. This is a collection of rows

whose length varies. A simple method used to store a Symmetric Skyline matrix is to

place all the rows in order from 1 to N, [2] in a real array A and then keep an integer

array which holds the pointers to the beginning of each row. The column positions of

the nonzero elements stored in A can be easily derived and are therefore not kept.

2.1.8 The Non Symmetric Skyline format (NSK)

Conceptually, the data structure of a nonsymmetric skyline matrix consists of two sub-

structures. The first consists of its lower part of A stored in skyline format and the
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second of its upper triangular part stored in a column oriented skyline format (i.e., the

transpose is stored in standard row skyline mode). Several ways of putting these sub-

structures together may be used and there are no compelling reasons for preferring one

strategy over another one. We chose to store contiguously each row of the lower part

and column of the upper part of the matrix. The real array A will contain the 1-st row

followed by the first column (empty), followed by the second row followed by the second

column, etc.. An additional pointer is needed to indicate where the diagonal elements,

which separate the lower from the upper part, are located in this array.

2.1.9 The Jagged Diagonal Format (JAD)

This storage mode is very useful for the efficient implementation of iterative methods

on parallel and vector processors [8]. Starting from the CSR format, the idea is to first

reorder the rows of the matrix decreasingly according to their number of nonzeros entries.

Then, a new data structure is built by constructing what we call "jagged diagonals" (j-

diagonals). We store as a dense vector, the vector consisting of all the first elements in

A, JA from each row, together with an integer vector containing the column positions of

the corresponding elements. This is followed by the second jagged diagonal consisting of

the elements in the second positions from the left. As we build more and more of these

diagonals, their length decreases. The number of j-diagonals is equal to the number of

nonzero elements of the first row, i.e., to the largest number of nonzero elements per row.

The data structure to represent a general matrix in this form consists, before anything,

of the permutation array which reorders the rows. Then the real array A containing the

jagged diagonals in succession and the array JA of the corresponding column positions

are stored, together with a pointer array IA which points to the beginning of each jagged

diagonal in the arrays A, JA. The advantage of this scheme for matrix multiplications

has been illustrated in [8] and in [1] in the context of triangular system solutions.

2.2 The FORMATS conversion module

It is important to note that there is no need to have a subroutine for each pair of data

structures, since all we need is to be able to convert any format to the standard row-

compressed format and then back to any other format. There are currently 23 different

conversion routines in this module all of which are devoted to converting from one date

structure to another.

The naming mechanism adopted is to use a 6-character name for each of the sub-

routines the first 3 for the input format and the last 3 for the output format. Thus

COOCSR does the conversion from the coordinate format to the Compressed Sparse

Row format. However it was necessary to break the naming rule in one exception. We

needed a version of COOCSR that is in-place, i.e., which can take the input matrix, and

convert it directly into a CSR format by using very little additional work space. This

routine is called COICSR. Each of the formats has a routine to translate it to the CSR

format and a routine to convert back to it from the CSR format. The only exception

is that a CSCCSR routine is not necessary since the conversion from Column Sparse
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format to Sparse Row format can be performed with the same routine CSRCSC. This

is essentially a transposition operation.

Considerable effort has been put in attempting to make the conversion routines in-

place, i.e., in allowing some or all of the output arrays to be the same as the input arrays.

The purpose is to save storage whenever possible without sacrificing performance. The

added flexibility can be very convenient in some situations. When the additional coding

complexity to permit the routine to be in place was not too high this was always done.

If the subroutine is in-place this is clearly indicated in the documentation. There is one

case where we found it necessary to provide the in-place version as well as the regular

version: COICSR is an in-place version of the COOCSR routine. We would also like

to add that other routines that avoid the CSR format for some of the more important

data structures may eventually be included. For now, there is only one such routine 1

namely, COOELL.

2.3 Internal format used in SPARSKIT

Most of the routines in SPARSKIT use internally the Compressed Sparse Row format.

The selection of the CSR mode has been motivated by several factors. Simplicity, gener-

ality, and widespread use are certainly the most important ones. However, it has often

been argued that the column scheme may have been a better choice. One argument in

this favor is that vector machines usually give a better performance for such operations

as matrix vector by multiplications for matrices stored in CSC format. In fact for paral-

lel machines which have a low overhead in loop synchronization (e.g., the Alliants), the

situation is reversed, see [8] for details. For almost any argument in favor of one scheme

there seems to be an argument in favor of the other. Fortunately, the difference provided

in functionality is rather minor. For example the subroutine APLB to add two matrices

in CSR format, described in Section 5.1, can actually be also used to add two matrices

in CSC format, since the data structures are identical. Several such subroutines can be

used for both schemes, by pretending that the input matrices are stored in CSR mode

whereas in fact they are stored in CSC mode.

3 Manipulation routines

The module UNARY of SPARSKIT consists of a number of utilities to manipulate and

perform basic operations with sparse matrices. The following sections give an overview

of this part of the package.

3.1 Miscellaneous operations with sparse matrices

There are a large number of non-algebraic operations that are commonly used when

working with sparse matrices. A typical example is to transform A into B = PAQ

1Contributed by E. Rothman from Corner University.
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where P and Q are two permutation matrices. Another example is to extract the lower

triangular part of A or a given diagonal from A. Several other such 'extraction' opera-

tions are supplied in SPARSKIT. Also provided is the transposition function. This may

seem as an unnecessary addition since the routine CSRCSC already does perform this

function economically. However, the new transposition provided is in place, in that it

may transpose the matrix and overwrite the result on the original matrix, thus saving

memory usage. Since many of these manipulation routines involve one matrix (as op-

posed to two in the basic linear algebra routines) we created a module called UNARY

to include these subroutines.

Another set of subroutines that are sometimes useful are those involving a 'mask'.

A mask defines a given nonzero pattern and for all practical purposes a mask matrix is

a sparse matrix whose nonzero entries are all ones (therefore there is no need to store

its real values). Sometimes it is useful to extract from a given matrix A the 'masked'

matrix according to a mask M, i.e., to compute the matrix A ® M , where ® denotes

the element-wise matrix product, and M is some mask matrix.

3.2 The module UNARY

This module of SPARSKIT consists of a number of routines to perform some basic

non-algebraic operations on a matrix. The following is a list of the routines currently

supported with a brief explanation.

SUBMAT

FILTER

TRANSP

COPMAT

GETDIA

Extracts a square or rectangular submatrix from a sparse matrix.

The input is a matrix in CSR format the output is a matrix in

CSR format. The output matrix can, if desired, be overwritten

on the input matrix (Algorithm is "in place").

Filters out elements from a matrix according to their magnitude.

The input is a matrix in CSR format, the output is a matrix in

CSR format, obtained from the input matrix by removing all its

elements that are smaller than a certain threshold. The thresh-

old is computed for each row according to one of three provided

options. The algorithm is in place.

This is an in-place transposition routine, i.e., it is an in place

version of the CSRCSC routine in FORMATS.

Copy of a matrix into another matrix (both stored CSR).

Extracts a specified diagonal from a matrix. An option is provided

to transform the input matrix so that the diagonal is removed from

its entries. Otherwise the diagonal is extracted and the input

matrix remains untouched.
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GETL

GETU

LEVELS

AMASK

CPERM

RPERM

DPERM

VPERM

RETMX

DIAPOS

EXTBDG

GETBWD

BLKFND

BLKCHK

This subroutine extracts the lower triangular part of a matrix,

including the main diagonal. The algorithm is in-place.

Extracts the upper triangular part of a matrix. Similar to GETL.

Computes the level scheduling data structure for lower triangular

matrices, see [1].

Extracts C = A ® M, i.e., performs the mask operation. This

routine computes a sparse matrix from an input matrix A by ex-

tracting only the elements in A, where the corresponding elements

of M are nonzero. The mask matrix M, is a sparse matrix in CSR

format without the real values, i.e., only the integer arrays JM

and IM are of the CSR format are passed.

Permutes the columns of a matrix, i.e., computes the matrix B =

AQ where Q is a permutation matrix.

Permutes the rows of a matrix, i.e., computes the matrix B = PA

where P is a permutation matrix.

Permutes the rows and columns of a matrix, i.e., computes B =

PAQ given two permutation matrices P and Q. This routine

gives a special treatment to the common case where Q = pT.

Performs an in-place permutation of a vector, i.e., performs z :=

Pz, where P is a permutation matrix.

Returns the maximum absolute value in each row of an input

matrix.

Returns the positions in the arrays A and JA of the diagonal

elements, for a matrix stored in CSR format.

Extracts the main diagonal blocks of a matrix.

Returns bandwidth=information on a matrix. This subroutine

returns the bandwidth of the lower part and the upper part of a

given matrix. May be used to determine these two parameters for

converting a matrix into the BND format.

Attempts to find the block-size of a matrix.

Checks whether a given integer is the block size of A. This routine

is called by BLKFND.
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INFDIA Computes the number of nonzero dements of each of the 2n - 1

diagonals of a matrix. (The first diagonal is the diagonal with off-

set -n which consists of the entry a.,1 and the last is the diagonal

with offset n).

AATDGR Computes the number of nonzero elements in each row of the
matrix AA r.

ATADGR Computes the number of nonzero elements in each row of the
matrix A r A.

APBDGR Computes the number of nonzero elements in each row of the

matrix A + B, given two matrices A and B.

RNRMS Computes the norms of the rows of a matrix. The usual three

normsI1-111,I1-11 ,and I1.11 are supported.

CNRMS Computes the norms of the columns of a matrix. Similar to RN-

RMS.

RSCAL Scales the rows of a matrix by their norms. The same three norms

as in RNRMS are available.

CSCAL Scales the columns of a matrix by their norms. The same three

norms as in RNRMS are available.

4 Input/Output routines

The INOUT module of SPARSKIT comprises a few routines for reading, writing, and for

plotting and visualizing the structure of sparse matrices. These routines are essentially

geared towards the utilization of the Harwell/Boeing collection of matrices. There are

currently only three subroutines in this module.

READMT

PRTMT

PLTG

Reads a matrix in the Harwell/Boeing format.

Creates a Harwell Boeing file from an arbitrary matrix in CSC or

CSC format.

Creates a pic file for plotting the pattern of a matrix.

The routines readmt and prtmt allow to read and create files containing matrices

stored in the H/B format. For details concerning this format the reader is referred to
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[4]. While the purpose of readmt is dear, it is not obvious that one single subroutine

can write a matrix in H/B format and still satisfy the needs of all users. For example for

some matrices all nonzero entries are actually integers and a format using say a 10 digit

mantissa may entail an enormous waste of storage if the matrix is large. The solution

provided is to compute internally the best formats for the integer arrays IA and JA.

A little help is required from the user for the real values in the arrays A and RHS.

Specifically, the desired format is obtained from a parameter of the subroutine by using

a simple notation, see documentation for details.

We found it extremely useful to be able to visualize a sparse matrix, notably for

debugging purposes. A simple look at the plot can sometimes reveal whether the matrix

obtained from some reordering technique does indeed have the expected structure. For

now two simple plotting mechanisms are provided. First, a preprocessor to the Unix

utility 'Pic' allows one to generate a pic file from a matrix that is in the Harwell/Boeing

format or any other format. For example for a Harwell/Boeing matrix file, the command
is of the form

PltMat < HB filename

The output file is then printed by the usual troff or TeX commands. A translation of this

routine into one that generates a post-script file is also available in the module UNSUPP

(see Section 8). We should point out that the plotting routines are very simple in nature

and should not be used to plot large matrices. For example the pltmt routine outputs

one pie command line for every nonzero element. This constitutes a convenient tool for

document preparation for example. Matrices of size just up to a few thousands eva be

printed this way. Several options concerning size of the plot and caption generation are
available.

Another set of utilities for viewing profiles of sparse matrices on Sun screens is also

available, see Section 8.

5 Basic algebraic operations

The usual algebraic operations involving two matrices, such as C = A+ B, C = A +fiB,

C = AB, etc.., are fairly common in sparse matrix computations. These basic matrix

operations are included in the module called BLASSM. In addition there are a large

number of basic operations, involving a sparse matrix and a vector, such as matrix-vector

products and triangular system solutions that are very commonly used. Some of these

are included in the module MATVEC. Sometimes it is desirable to compute the patterns

of the matrices A + B and AB, or in fact of any result of the basic algebraic operations.

This can be implemented by way of job options which will determine whether to fill-in

the real values or not during the computation. We now briefly describe the contents of

each of the two modules BLASSM and MATVEC.
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5.1 The BLASSM module

Currently, the module BLASSM (Basic Linear Algebra Subroutines for Sparse Matrices)

contains the following nine subroutines:

AMUB

APLB

APLSB

APMBT

APLSBT

DIAMUA

AMUDIA

APLDIA

APLSCA

Performs the product of two matrices, i.e., computes C = AB,
where A and B are both in CSR format.

Performs the addition of two matrices, i.e., computes C = A + B,

where A and B are both in CSR format.

Performs the operation C = A+aB, where tr is a scalar, and A, B

are two matrices in CSR format.

Performs either the addition C = A + B T or the subtraction

C= A-B T.

Performs the operation C = A + sB T.

Computes the product of diagonal matrix (from the left) by a

sparse matrix, i.e., computes C = DA, where D is a diagonal

matrix and A is a general sparse matrix stored in CSR format.

Computes the product of a sparse matrix by a diagonal matrix

from the right, i.e., computes C = AD, where D is a diagonal

matrix and A is a general sparse matrix stored in CSR format.

Computes the sum of a sparse matrix and a diagonal matrix,

C=A+D.

Performs an in place addition of a scalar to the diagonal entries

of a sparse matrix, i.e., performs the operation A := A + aI.

Still missing from this list, and to be added in the near future are the routines

AMUBT

ATMUB

to multiply A by the transpose of B, C = AB T, and

to multiply the transpose of A by B, C = ATB.



SPARSKIT I_

Operations of the form tA ÷ 8B have been avoided as their occurrence does not
warrant additional subroutines. Several other operations similar to those defined for

vectors have not been included. For example the scaling of a matrix in sparse format is

simply a scaling of its real array A, which can be done with the usual BLAS1 scaling

routine, on the array A.

5.2 The MATVEC MODULE

In its current status, this module contains matrix by vector products and various sparse

triangular solution methods. The contents are as follows.

AMUX

ATMUX

AMUXE

AMUXD

AMUXJ

LSOL

LDSOL

LSOLC

LDSOLC

LDSOLL

Performs the product of a matrix by a vector. Matrix stored in

Compressed Sparse Row (CSR) format.

Performs the product of the transpose of a matrix by a vector.

Matrix A stored in Compressed Sparse Row format. Can also

be viewed as the product of a matrix in the Compressed Sparse

Column format by a vector.

Performs the product of a matrix by a vector. Matrix stored in

EUpack/Itpack (ELL) format.

Performs the product of a matrix by a vector. Matrix stored in

Diagonal (DIA) format.

Performs the product of a matrix by a vector. Matrix stored in

Jagged Diagonal (JAD) format.

Unit lower triangular system solution. Matrix stored in Com-

pressed Sparse Row (CSR) format.

Lower triangular system solution. Matrix stored in Modified

Sparse Row (MSR) format. Diagonal elements inverted.

Unit lower triangular system solution. Matrix stored in Com-

pressed Sparse Column (CSC) format.

Lower triangular system solution. Matrix stored in Modified

Sparse Column (MSC) format with diagonal elements inverted.

Unit lower triangular system solution with the level scheduling

approach. Matrix stored in Modified Sparse Row format, with

diagonal elements inverted.
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USOL

UDSOL

USOLC

UDSOLC

Unit upper triangular system solution. Matrix stored in Com-

pressed Sparse Row (CSR) format.

Upper triangular system solution. Matrix stored in Modified

Sparse Row (MSR) format. Diagonal elements inverted.

Unit upper triangular system solution. Matrix stored in Com-

pressed Sparse Column (CSC) format.

Upper triangular system solution. Matrix stored in Modified

Sparse Column (MSC) format with diagonal elements inverted.

Most of the above routines are very short and rather straightforward. A long test

program is provided to run all of the subroutines on a large number of matrices that are

dynamically generated using the MATGEN module.

6 The basic statistics and information routines

It is sometimes very informative when analyzing solution methods, to be able in a short

amount of time to obtain some statistical information about a sparse matrix. The

purpose of the subroutine infol, is to print out such information. The question we

had to address at first was to determine what type of information was the most useful

without being too expensive to obtain. The simplest and most common statistics are:

total number of nonzero elements, average number of nonzero elements per row (with

standard deviation), band size. Our preliminary package Infol contains the above and a

number of other features. For example it answers the following questions: Is the matrix

lower triangular, upper triangular? does it have a symmetric structure? If not how

close is it from having this property? Is it weakly row-diagonally dominant? What

percentage of the rows are weakly diagonally dominant? Same questions for column

diagonal dominance. A sample output from infol is listed in Figure1. This print-out

was generated by typing

infol _ pores_2

where pores_2 is a file containing a matrix in H/B format.

If the Harwell-Boeing matrix is symmetric then Infol takes this information into ac-

count to obtain the correct information instead of the information on the lower triangular

part only. Moreover, in cases where only the pattern is provided (no real values), then

infol will print a message to this effect and will then give information related only to the

structure of the matrix. The output for an example of this type is shown in Figure 2.

We should point out that the runs for these two tests were basically instantaneous on a

Sun-4 workstation.



SPARSKIT 17

* Dimension N

* Number of nonzero elements

* Average number of nonzero elements/Column

* Standard deviation for above average

* Nonzero elements in strict upper part

* Nonzero elements in strict lower part

* Nonzero elements in main diagonal

* Weight of longest column

* Weight of shortest column

* Weight of longest row

* Weight of shortest row

* Matching elements in symmetry

* Relative Symmetry Match (symmetry=l)

* Average distance of a(i,j) from diag.

* Standard deviation for above average

= 1224 *

= 9613 *

= 7.8538 *

5.4337 *

= 4384 *

= 4005 *

= 1224 *

= 30 *

= 2 *

= 30 *

= 2 *

= 6358 *

= 0.6614 *

= 0.615E+02 *

= 0.103E+03 *

* Frobenius norm of A

* Frobenius norm of symmetric part

* Frobenius norm of nonsymmetric part

* Maximum element in A

* Percentage of weakly diagonally dominant rows

_e

Percentage of weakly diagonally dominant columns =

0.150E+09 *

0.100E+09 *

0.951E+08 *

0.378E+08 *

0.481E+00 *

0.490E-02 *

* Lower bandwidth (max: i-j, a(i,j) .ne. O)

* Upper bandwidth (max: j-i, a(i,j) .he. O)

* Maximum Bandwidth

* Average Bandwidth

* Number of nonzeros in skyline storage

* 90_ of matrix is in the band of width

* 80g of matrix is in the band of width

* The total number of nonvoid diagonals is

* The I0 most important diagonals are (offsets)

* 0 I -1 -2 2 -3 -32 -264

* The accumulated percentages they represent are

* 12.7 24.6 31.7 37.9 43.6 49.0 52.4 55.7

= 470 *

= 471 *

= 736 *

= 0.190E+03 *

= 340385 *

= 527 *

= 145 *

= 367 *

: *

264 32 *

58.6 61.4 *

The matrix does not have a block structure

Figure 1: Sample output from Infol
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**************************************

• SYMMETRIC PATTERN FROM CANNES ,LUCIE_ MARR0, JUNE 1981. *

• Key = CAN 1072 , Type = PSA *

• No values provided - Information on pattern only *

**************************************

* Dimension N

* Number of nonzero elements

* Average number of nonzero elements/Column

* Standard deviation for above average

* Nonzero elements in strict upper part

* Nonzero elements in strict lower part

. Nonzero elements in main diagonal

* Weight of longest column

* Weight of shortest column

* Matching elements in symmetry

* Relative Symmetry Match (symmetry=l)

* Average distance of a(i,j) from diag.

* Standard deviation for above average

= 1072 *

= 6758 *

= 11.6082 *

= 5.6474 *

= 5686 *

= 5686 *

= 1072 *

= 35 *

= 6 *

= 6758 *

= 1.0000 *

= 0.110E+03 *

= 0.174E+03 *

..... mmD_mww .... *

* Lo.er bandwidth (max: i-j, a(i,j) .ne. O) = 1048 *

* Upper band.idth (max: j-i, a(i,j) .ne. O) = 1048 *

* Maximum Band.idth = 1055 *

* Average Band.idth = 0.376E+03 *

* Number of nonzeros in skyline storage = 277248 *

* 90_ of matrix is in the band of .idth = 639 *

* 80_ of matrix is in the band of .idth = 343 *

* The total number of nonvoid diagonals is = 627 *

* The 5 most important diagonals are (offsets) : *

* 0 -1 -2 -3 -4 *

* The accumulated percentages they represent are : *

* 15.9 24.7 29.7 33.9 36.3 *

* ........ *

* The matrix does not have a block structure *

Figure 2: Sample output from Infol for matrix with pattern only
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7 Matrix generation routines

One of the difficulties encountered when testing and comparing numerical methods,

is that it is sometimes difficult to guarantee that the matrices compared are indeed

identical. Even though a paper may give full details on the test problems considered,

programming errors or differences in coding may lead to the incorrect matrices and the

incorrect conclusions. This has often happened in the past and is likely to be avoided

if the matrices were generated with exactly the same code. The module MATGEN of

SPARSKIT includes several matrix generation routines. Currently, the matrices gener-

ated by SPARSKIT are of the following type.

1. Scalar 5-point and 7-point matrices arising from discretization of the elliptic type

equation:

O (aO u. 0 0 0 0 ± ±Lu

on rectangular regions with Dirichlet boundary conditions. The user provides the

functions a, b, c, ...,9 and the result is a matrix in general sparse format, possibly

printed in a file in the H/B format.

For now only centered differences are considered. However, an option will be added

in the future to allow upwinded schemes for the first order derivatives.

2. Block 5-point and 7-point matrices arising from discretization of the elliptic type

equation (1) in which u is now a vector of n free components, and a, b, c, ..., g are

n.free x n.free matrices provided by the user.

3. Finite element matrices created from the heat conduction problem

- V.KVu = f (2)

on a domain D with Dirichlet boundary conditions. A coarse initial domain is

described by the user and the code does an arbitrary user-specified number of

refinements of the grid and assembles the matrix, in CSR format. Linear triangular

elements are used. If only the matrix is desired the heat source ] can be zero.

Arbitrary grids can be used, but the user may also take advantage of six initial

grids supplied by the package for simple test problems.

4. Test matrices _- from Zlatev et. al. [10] and Osterby and Zlatev [7]. The first two

matrix generators described in the above references are referred to as D(n, c) and

E(n, c) respectively. A more elaborate class where more than two parameters can

be varied, is referred to as the class F(m, n, c, r, a) in [7, 10]. The three subroutines

to generate these matrices are called MATRF2 (for the class F(m, n, c, r, a) ), DCN

(for the class D(c,n)) and ECN (for the class E(c,n)). These codes can generate

rectangular as well as square matrices and allow a good flexibility in making the
matrices more or less dense and more or less well conditioned.

2These subroutines have been contributed to the author by E. Rothman from Cotnell University.
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8 The UNSUPP directory

In addition to the basic tools described in the previous sections, SPARSKIT includes

a directory called UNSUPP includes software that is not necessarily portable or that

does not fit in all previous modules. For example software for viewing matrix patterns

on some particular workstation may be found here. Another example is all the different

reordering schemes, such as minimum degree ordering, or nested dissection etc.. Many

of these are available from NETLIB but others may be contributed by researchers for

comparison purposes.

In version 1 the following items are available in UNSUPP. _

MATVIEW

MATVIEWP

PLTMTPS

ILUT

A FORTRAN/suncore progrmm to plot a Harwell/Boeing matrix

on a sun screen. This must be used with suntools. Also provided

is a makefile to produce the executable 'viewmat'. Then the usage

is viewraat < HBII_ e where HBlil, is a file containing a matrix in

HarweU-Boeing format.

Similar to MATVIEW but allows to zoom on a rectangular part of

the matrix. A makefile is also provided to produce the executable

viewmatp. To execute one just types 'matviewp' and there will be

a prompt asking for the name of the matrix and for the row and

column indices il, i2,jl,j2 that limit the submatrix to be viewed.

a translation of the pltmt subroutine in INOUT/inout.f to produce

a post-script file rather than a pic file. Does not yet offer the same

functionality as pltmt.

Preconditioned GMRES algorithm with three preconditioners.

The main item here is a robust preconditioner called ILUT (un-

published) which uses a dual thresholding strategy for dropping

elements. Arbitrary accuracy is allowed in ILUT. The standard

ILU(0) and MILU(0) are also provided. All can be used with the

same PGMRES routine which supports only right precondition-

ing.

The two basic programs for viewing matrix patterns on a sun screen will eventually

be replaced by programs for the X-windows environment which is fast becoming a stan-

dard. The ILUT code is provided mainly for facilitating comparisons between iterative

algorithms.
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9 Distribution

The first release of the package follows the Linpack-Eispack approach in that it aims at

providing ei_cient and well tested subroutines written in portable FORTRAN. Similarly

to the Linpack and Eispack packages, the goal is to make available a common base of

useful codes for a specific area of computation, in this case sparse linear algebra. The

package is in the public domain and will be made accessible through the internet.

Currently, the package is organized in six distinct subdirectorles, each containing one

or more modules. The six directories and the modules they contain are the following:

INOUT (inout.f), FORMATS (formats.f, unary.f), BLASSM (blassm.f, matvec.f), MAT-

GEN (genmat.f, zlatev.f), INFO (dinfol.f), UNSUPP (various routines). Test programs

with unix makefiles are provided in each subdirectory to test a large number of the sub-

routines. Each directory contains a README file listing contents, and giving additional
information.

For information concerning distribution contact the author at na.saad_na-net.stanford.edu.

10 Conclusion and Future Plans

It is hoped that SPARSKIT will be useful in many ways to researchers in different

areas of scientific computing. In the first version of SPARSKIT, there axe few sparse

problem solvers, such as direct solution methods, or eigenvalue solvers. Some of these

are available from different sources and we felt that it was not appropriate to provide

additional ones. The original motivation for SPARSKIT is that there is a gap to fill in

the manipulation and basic computations with sparse matrices. Once this gap is f_ed

with some satisfaction, then additional functionality may be added.

We briefly mentioned in the introduction the possibility of using SPARSKIT to de-

velop an interactive package. Large matrices of dimension tens of of thousands can easily

be manipulated with the current supercomputers, in real time. One of the dlil_culties

with such an interactive package is that we do not yet have reliable routines for com-

puting eigenvalues/eigenvectors of large sparse matrices. The state of the art in solving

linear systems is in a much better situation. However, one must not contemplate to

perform the same type of computations as with small dense matrices. As an example,

getting all the eigenvalues of a sparse matrix is not likely to be too useful when the

matrix is very large.

Beyond interactive software for sparse linear algebra, one can envision the integration

of SPARSKIT in a larger package devoted to solving certain types of Partial Differential

Equations, possibly interactively.
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APPENDIX" QUICK REFERENCE

For convenience we list in this appendix the most important subroutines in the various

modules of SPARSKIT. More detailed information can be found either in the body of

the paper or in the documentation of the package.

FORMATS Module

• CSRDNS : converts a row-stored sparse matrix into the dense format.

• DNSCSR : converts a dense matrix to a sparse storage format.

• COOCSR : converts coordinate to to csr format

• COICSR : in-place conversion of coordinate to csr format

• CSRCO0 : converts compressed sparse row to coordinate format.

• CSRSSR : converts compressed sparse row to symmetric sparse row format.

• SSRCSR : converts symmetric sparse row to compressed sparse row format.

• CSRELL : converts compressed sparse row to ellpack format

• ELLCSR : converts ellpack format to compressed sparse row format.

• CSRMSR : converts compressed sparse row format to modified sparse row format.

• MSRCSR : converts modified sparse row format to compressed sparse row format.

• CSRCSC : converts compressed sparse row format to compressed sparse column

format (transposition).

• CSRDIA : converts the compressed sparse row format into the diagonal format.

• DIACSR : converts the diagonal format into the compressed sparse row format.

• BSRCSR : converts the block-row sparse format into the compressed sparse row

format.

• CSRBSR : converts the compressed sparse tow format into the block-row sparse

format.

• CSRBND : converts the compressed sparse row format into the banded format

(linpack style).
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• BNDCSR : converts the banded format (linpack style) into the compressed sparse

row storage.

• CSRSSK : converts the compressed sparse row format to the symmetric skyline

format

• SSKSSR : converts symmetric skyline format to symmetric sparse row format.

• CSRJAD : converts the csr format into the jagged diagonal format

• JADCSR : converts the jagged-diagonal format into the csr format

• COOELL : converts the coordinate format into the Ellpack/Itpack format.

UNARY Module

• SUBMAT : extracts a submatrix from a sparse matrix.

• FILTER : filters elements from a matrix according to their magnitude.

• TRANSP : in-place transposition routine (see also csrcsc in formats)

• COPMAT : copies a matrix into another matrix (both stored csr).

• GETDIA : extracts a specified diagonal from a matrix.

• GETL : extracts lower triangular part.

• GETU : extracts upper triangular part.

• LEVELS : gets the level scheduling structure for lower triangular matrices.

• AMASK : extracts C = A ® M

• DPERM : permutes a matrix (B = PAQ) given two permutations P, Q

• CPERM : permutes the columns of a matrix (B = AQ)

• RPERM : permutes the rows of a matrix (B = PA)

• VPERM : permutes a vector (in-place)

• RETMX : returns the max absolute value in each row of the matrix.

• DIAPOS : returns the positions of the diagonal elements in A.

• EXTBDG : extracts the main diagonal blocks of a matrix.

• GETBWD : returns the bandwidth information on a matrix.
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• BLKFND : finds the block-size of a matrix.

• BLKCHK : checks whether a given integer is the block size of A.

• INFDIA : obtains information on the diagonals of A.

• AMUBDG : obtains the number of nonzeros in each row of AB.

• APBDGR : obtains the number of nonzero elements in each row of A q- B.

• RNRMS : computes the norms of the rows of A.

• CNRMS : computes the norms of the columns of A.

• RSCAL : scales the rows of a matrix by their norms.

• CSCAL : scales the columns of a matrix by their norms.

INOUT Module

• READMT : reads matrices in the boeing/HarweU format.

• PRTMT : prints matrices in the boeing/HarweU format.

• PLTMT : produces a 'pic' file for plotting a sparse matrix.

INFO Module

• DINFO1 : obtains a number of statistics on a sparse matrix.

MATGEN Module

• GEN57PT : generates 5-point and 7-point matrices.

• GEN5?BL : generates block 5-point and ?-point matrices.

• GENFEA : generates finite element matrices in assembled form.

• GENFEU : generates finite element matrices in unassembled form.

• ASSMB1 : assembles an unassembled matrix (as produced by genfeu).

• MATRF2 : Routines for generating sparse matrices by Zlatev et al.

• DCN: Routines for generating sparse matrices by Zlatev et al.
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• ECN: Routines for generating sparse matrices by Zlatev et al.

BLASSM Module

• AMUB : computes C = A* B .

• BPLB : computes C = A -{- B .

• APLSB : computes C = A + sB.

• APMBT : Computes C = A + B r.

• APLSBT : Computes C = A + 8 * B T .

• DIAMUA : Computes C = Diag * A .

• AMUDIA : Computes C = A * Diag.

• APLDIA : Computes C = A +Diag.

• APLSCA : Computes A := A + sI (8 = scalar).

MATVEC Module

• AMUX : A times a vector. Compressed Sparse Row (CSR) format.

• ATMUX : A T times a vector. CSR format.

• AMUXE : A times a vector. Ellpack/Itpack (ELL) format.

• AMUXD : A times a vector. Diagonal (DIA) format.

• AMUXJ : A times a vector. Jagged Diagonal (JAD) format.

• LSOL : Unit lower triangular system solution. Compressed Sparse Row (CSR)

format.

• LDSOL : Lower triangular system solution. Modified Sparse Row (MSR) format.

• LSOL : Unit lower triangular system solution. Compressed Sparse Column (CSC)

format.

• LDSOLC: Lower triangular system solution. Modified Sparse Column (MSC) for-

mat.

• LDSOLL: Lower triangular system solution with level scheduling. MSR format.
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• USOL : Unit upper triangular system solution. Compressed Sparse Row (CSR)

format.

• UDSOL : Upper triangular system solution. Modified Sparse Row (MSR) format.

• USOLC : Unit upper triangular system solution. Compressed Sparse Column

(CSC) format.

• UDSOLC: Upper triangular system solution. Modified Sparse Column (MSC)

format.

UNSUPP Module

• ILUT: ILUT(k) preconditioned GMRES mini package.

• MATVIEW : suncore code for viewing a matrix on a sun station.

• MATVIEWP: suncore code for viewing a submatrix on a sun station.

• PLTMTPS : creates a post Script file to plot a sparse matrix.




